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Mode coupling between two waveguides with offset, tilt and gap 
using quantum theoretical methods 
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t Institute for General Physics of the Academy of Sciences of the USSR, Moscow, USSR 
$ Institute for High-Frequency Technique and Quantum Electronics, 
University of Karlsruhe, D 7500 Karlsruhe, West Germany 

Received 14 August 1986, in final form 30 December 1986 

Abstract. Using quantum mechanical generalised coherent states, mode excitation by 
Gauss-Hermite or Gauss-Laguerre beams with spherical wavefronts is treated. For mode 
coupling between two waveguides with offset, tilt and gap recursion relations and sum 
rules are found. 

1. Introduction 

The mode structure of a waveguide field is an important characteristic of the waveguide. 
It is responsible for intermodal pulse dispersion, modal noise, radiation loss and so 
on (Grau 1981, Snyder and Love 1983). If the distance from the radiating source does 
not exceed a characteristic length sufficient for the establishment of an equilibrium 
modal distribution in the waveguide, then the mode structure of the field depends only 
on the excitation conditions. The waveguides in fibre optics and in integrated optics 
are often excited by radiation from laser sources or by beams from the end face of 
another irradiating waveguide. The modes of typical laser beams and the modes of 
parabolic-index waveguides are usually described by Gauss-Hermite or Gauss- 
Laguerre functions. It is known (Yariv 1975) that such beams do not change their 
functional form during propagation in free space: only their width, angular divergence 
and wavefront curvature are changing. Moreover, it is known (Marcuse 1972, Krivosh- 
lykov er a1 1985a) that fundamental modes of active parabolic-index waveguides (with 
gain) are also described by Gaussian beams with spherical wavefronts, whose radii of 
curvature are related to the waveguide gain parameter. 

The aim of this paper is to investigate the mode excitation coefficients for a 
multimode parabolic-index optical waveguide excited by a Gauss-Hermite or Gauss- 
Laguerre beam with spherical wavefront. For the sake of definiteness, we shall concen- 
trate in this paper on the problem of mode coupling between two multimode parabolic- 
index waveguides, keeping in mind that all results obtained may also be used for the 
description of waveguide mode excitation by laser beams. In an ideal case, boih 
waveguides would be identical, without axial distance, without tilt of axes and without 
transversal offset. The mode distributions in both waveguides would coincide. In 
reality, the two waveguides are different and the connection is imperfect. This will 
introduce a changed mode distribution in the second waveguide by coupling between 
the modes of the guides. 

0305-4470/87/123805 + 19%02.50 @ 1987 IOP Publishing Ltd 3805 



3806 S G Krivoshlykov and E G Sauter 

The effect of these imperfections has been treated in some way or other by many 
authors. We mention only the following papers. The coupling coefficients between 
fundamental modes of planar graded-index waveguides were obtained by Marcuse 
(1977) and turn out to be similar to those between Gaussian beams and the fundamental 
mode of a lens waveguide obtained by Kogelnik (1964). Mode excitation of a multi- 
mode parabolic-index waveguide by coherent Gaussian beams was investigated by 
Grau et a1 (1980), Saijonmaa et a1 (1980) and Georg (1982). The similar problem for 
the case of excitation by partially coherent Gaussian beams was solved by Krivoshlykov 
et a/ (1985b). Coupling coefficients between modes of lenslike media were obtained 
by Arnaud (1971). In Krivoshlykov and Sissakian (1979) algebraic and group theoretic 
methods were developed to investigate the mode coupling between two butt-jointed 
parabolic-index optical waveguides, and in Krivoshlykov et al (1983b) these methods 
were used to investigate mode coupling in the case when two different general square- 
law-index multimode waveguides with elliptical cross sections are to be butt-jointed 
with offset and tilt. The advantage of the algebraic approach is that it provides a 
uniform treatment of all the mentioned effects and that it allows explicit expressions 
to be obtained for the coupling coefficients in the most general case. In the present 
paper we shall generalise this approach for calculating mode coupling coefficients in 
the most general case when there is even a longitudinal gap between the waveguides 
which are to be connected. 

We assume both guides showing different parabolic refractive index distributions 
extending to infinity. In this way we approximate real multimode waveguides with 
gradient index carrying a large number of modes. The mode fields are solutions of 
the scalar Helmholtz equation, which-in this case-is identical with the time-indepen- 
dent two-dimensional Schrodinger equation. In abstract language: one has to solve 
the quantum mechanical eigenvalue problem for the two-dimensional harmonic oscil- 
lator. We use the well known operator methods of quantum theory and introduce 
annihilation and creation operators for both waveguides. 

By a succession of four linear canonical transformations we can describe the offset, 
the tilt (through an infinitesimally small angle) and the axial gap between the different 
waveguides and obtain a relationship between the operators of both waveguides. We 
obtain a set of recurrence relations between the coupling coefficients. To start these 
relations only a few simple Gaussian integrals have to be solved. For the canonical 
transformation describing the axial gap, we use generalised coherent states-a generali- 
sation of the usual coherent states which are known in quantum mechanics as correlated 
coherent states (Dodonov et a/  1980). It was shown by Krivoshlykov et a/  (1983a) 
that these generalised coherent states describe Gaussian beams with spherical wave- 
fronts. In Krivoshlykov and Sissakian (1986) the generalised Fock representation of 
occupation numbers and the generalised angular momentum representation were 
introduced and it was shown that these states represent spherical Gauss-Hermite or 
Gauss-Laguerre beams which are useful to describe beams with curved wavefronts at 
the front plane of the second waveguide. We represent the solution in Cartesian 
coordinates using Gauss-Hermite functions or in cylindrical coordinates using Gauss- 
Laguerre functions. 

In § 2, we connect the optical problem with quantum theory. Section 3 gives the 
coordinate transformations, resulting from the geometrical imperfections: axial shift, 
rotation and transversal shift. We also define the mode coupling coefficients and the 
mode overlap integrals in the general (transversally) two-dimensional case for two 
different but circular-symmetric fibres. Section 4 specialises to the case of only one 
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transversal dimension (slab waveguide) and describes the four canonical transforma- 
tions. In P 5,  we derive the recurrence relations for the overlap integrals and the 
pertinent integrals necessary for starting them. In 5 6, the coupling between Gauss- 
Laguerre modes of coaxial circular-symmetric fibres is investigated. The appendices 
1-3 give a short review of this new type of generalised states because the original 
papers are not available in English. 

2. Connection between the optical problem and quantum theory 

We consider a dielectric circular-symmetric waveguide showing a parabolic distribution 
of the refractive index (homogeneous in the z direction): 

n i  - w2r2 = ni[ 1 - 2A( r / c ~ ) ~ ]  for r < a  
for r >  a (1) n 2 ( x , ,  x2) = n2(r) = 

where r = (x:+x:)”~. As usual (Grau 1981, Snyder and Love 1983), we have defined 
the relative difference of refractive indices 

A = (w2a2)/(2ni) 

and we set 

V = noka(2A)”’ = ka2w 

where k = 2.rrf/c. The parameter U (  f27rf) is the gradient constant of the waveguide 
with profile (1) and f is the light frequency. 

The parabolic profile will now be extended to infinity in the transversal x1 , x2 plane 
(no truncation at r = a ) .  The time dependence is chosen as exp(-2.rriff). For the 
solution of the scalar Helmholtz equation we use the ansatz 

E(x1 9 x2,z) = *(XI, x2) exp(iPz) (2) 
where +(x,, x2) is the solution of the following eigenvalue problem (Krivoshlykov and 
Sissakian 1979): 

where we set a, = a/ax, ( j  = 1,2) and 

P / k =  (ni-2~)”’ .  (4) 

We introduce the momentum operators Cj = -(i/k)a, and the operators of position 
gj (multiplication by x j )  in coordinate space representation (Marcuse 1972). (We do 
not distinguish between operators in abstract Hilbert space and operator representations 
in some function space.) Then 

[ii, f i j ]  = (i /  k ) & f  

(f is the unit operator) and 

A* = E* 

with the Hamiltonian 
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Here, the a^,, 4,’ are ay ih i l a t ion  and creation operators which satisfy the commutation 
relations [a^ , ,  a^:] = &I. They are defined as follows: 

1 (kw)”’ ( k w ) - ” 2 ) ( : )  (7)  2) =z ( (kw)l/2 - ( h ) - 1 / 2  

or 

If we replace l / k  by h (Planck’s c o n s t a n t / 2 ~ ) ,  then ( 5 )  and (6) describe the quantum 
mechanical eigenvalue problem for a two-dimensional harmonic oscillator and (3) is 
the stationary Schrodinger equation for this potential. 

The solution of ( 5 )  is known (Landau and Lifshitz 1965); the eigenvalues are 

&mlm2=(w/k)(m1+mZ+ 1) m ,  , m2 3 0, integer. (9) 

With (4) we obtain for the propagation constant 

P m , m l  = k d l -  2&m,m2/ni )”2  

= kn,/ 2 + kn,/ 2 = n, k (10c) 

(the first approximation holds for K: >> E ~ , ~ , ;  the second one holds for kni >> wm, and 
gives a P value independent from m , ,  m 2 ) .  

The guided modes of the waveguide are the eigenfunctions (Gauss-Hermitian 
functions) of the eigenvalue equation ( 5 ) .  We write them as 

(Clm,m,(XI  9 ~ 2 )  = ( ~ 1 ~ 2 l m I m J  

which coincides with (A2.4) for w l  = w2 = w. The coherent states in coordinate space 
representation: 

(La la , (X I  3 x2) = ( X I X 2 l a I a 2 )  

coincide with (A1.5) for U ,  = w2 = w and represent the best approximation to a 
geometrical ray in the waveguide (1) (Krivoshlykov and Sissakian 1979). 

Finally, we now write (cf (2) )  

ImYmJ = eXP(iPmlmlZ)I m ,  mz) = Omlml(z)lml m2).  (12) 
Analogously, we define, using (lOc), the coherent states l a ? 2 )  = exp(ikn,z)/a,a,). 
All these relations hold for the first waveguide as well as for the second but all 

quantities referring to the second waveguide will be primed in the following (e.g. w 
and w ‘ ,  moreover eigenvalues m , ,  m2 (respectively n;, ni), but we set n o =  n &  in (1)). 
For the connection between the annihilation and creation operators â ,, 6; and a^:, â:’ 
of both waveguides we shall find a canonical transformation. 
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3. The transformation of coordinates and the mode overlap integrals 

The coordinate systems of both waveguides are connected by a translation in longi- 
tudinal direction (gap), by a shift in transversal direction (offset) and by an infinitesimal 
rotation of the waveguide axes. 

We shall distinguish two different systems of rectangular coordinates (figure l ) ,  
the z, z’ axes of which show along the waveguide axes and the x2, x i  axes are parallel 
to the line of intersection of the end plane of waveguide 1 with the front plane of 
waveguide 2. The coordinate system Ox,x2z and the auxiliary system Px,x,z are related 
by a shift z + z + zq.  The coordinate systems Px,x2z and O‘x{x:z‘ are related by a shift 
of the centres from P to 0‘ (the distance d has been decomposed into d X i  = d ,  and 
d x i =  d2 along the xi, x i  axes), followed by a rotation through the angle 8 about the 
x; axis: 

x, = (x i  - d , )  cos 8 - z’ sin e 
~2 = X; - d2 

z = ( x ’ , - d 1 ) s i n ~ + z ’ c o s e .  

The end face of waveguide 1 irradiates Gauss-Hermite modes with plane wavefronts 
Im,m2) (A2.2), which are generated by the operator ij (A1.3) and are described by 
Gmlm2(xl , x2) (A2.4) with w ,  = w 2  = w. The initial spot size at z = 0 is go= 1/(2wk)”*. 
After propagating the distance zo in free space, we get at point P a radius R(z) of 
curvature and a width a(z) of a fundamental Gaussian beam 100) (Yariv 1975) 

R(z=z0)=zo l+- a2(zo) = a;( 1 + z&J’). ( w.’zJ 

From R(zo), a(zo), we find-according to (A1.16)-the parameters p and ,y of the 
generalised operator $, (A1.12), which generates spherical Gauss-Hermite modes 
I m, r3,) (A2.7). These modes may be represented by a generalised Fock’s representation 
of occupation numbers (Clmlm2(x1, x2) (A2.8). In the next section, we derive the canonical 
transformation between these operators G j ,  $j’ and the usual operators 8:, 2:’ of the 
second waveguide, using the transformation (13) of the coordinates. 

2’ 

Waveguide 2 

Figure 1. Geometry 
offset PO‘. 

for the general transformations with gap OP = zo,  tilt through 0, 
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is the mode overlap integral in the front plane of the second waveguide: z' = 0. Here, 
equations ( ~ O C ) ,  (12) and (13) have been used. 

These mode overlap integrals are the mode coupling coefficients between the modes 
of the different waveguides. They are at the same time the excitation coefficients for 
the second waveguide. The measurements (Bartelt et a1 1983, Golub et a1 1984, see 
also Shigesawa eta1 1978) are in agreement with theory (when zo = 0). The experimental 
set-up is also described in these papers. 

We see from (15) that, in the case of waveguides with circular symmetry, the mode 
overlap integrals may be reduced to the product of two one-dimensional integrals, if 
an appropriate coordinate system is chosen. Therefore, it is sufficient to study only 
the one-dimensional problem. 

4. Canonical transformations in the case of parabolic-index slab waveguides 

Consider mode coupling between two one-dimensional slab waveguides (figure 2). 
The modes with plane wavefronts coming from the first waveguide are generated by 
the operators Gj (7) with j = 1 (this subscript 1 will be omitted in the following). The 
case j = 2 is mentioned at the end of P 5 .  After propagating a distance zo in free space, 
they transform into spherical beams, which are generated by the generalised operators 
2 (A1.12), where the parameters p and x are connected with the graded-index 
waveguide parameter o and the distance zo between both waveguides according to 

Figure 2. Geometry for the transformation for two slab waveguides. 
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(A1.16) and (14). This translation from z = 0 to zfl is expressed by the homogeneous 
canonical transformation (A1.23) between 2 and 6. The modes ofthe second waveguide 
are generated by the operator a*‘ ( ( 7 ) ,  where we should replace w by w ’ ) .  

Now introducing the transformation (13) into i?, we obtain the relations 

- 2 = 72‘ + qh’+ - 6 

a^+ = q*a*’+ T*a*l+ - s* 
a*’= T * i  - q6++ 4, 

- q * 5 + Ti+ + l* a*’+ = 
(16) 

- 
where 

S = ( 2 p  cos /y 
)I’*[d +ipn,8 exp(ix)] 

L = ( k “ / 2 ) ” * ( d  + i n , B / w ’ ) = & + & .  

Here, we took into account the z’ dependence of the field in the second waveguide: 
exp(ip‘z’), which gives 

(18) 

and supposed that only very small angles 8 between waveguide axes are considered: 
cos 6 = 1, sin 6 = 8. Furthermore, the plane z’=  0 of the second waveguide is con- 
sidered. 

The transformation from 2, 2’ to a*’, 6’+ altogether is a linear inhomogeneous 
canonical transformation T :  

a,. = ip’=ip = ikn, 

where T = T4T3 T, T ,  is the product of four successive canonical transformations: 

T I =  ( U* ,”. T 2 = ( : i *  -,“ :) 
0 1  0 1  

1 0 c d  1 0 5 0  

T3= 0 1 4‘: 
(o 0 .=(: : :)* 

Here, T, (from (A1.23)) gives the translation from the end face of waveguide 1 at 
z=O to the front face of waveguide 2 at z = z o .  With T, (where I T I ~ - ~ ~ I * =  11, the 
beam is matched to the waveguide 2 (transition from the parameters p, ,y to the 
parameter U’ ) .  The following transformation T3 is causing the transversal shift = offset 
through the distance d between P and 0’ (figure l ) ,  and T4 represents the rotation 
through the infinitesimal angle 0 about the x i  axis. We see that this rotation T4 
corresponds to a transversal shift (T3) ,  but the real distance d must be replaced by 
the imaginary quantity inof3/w’. The transformations T3,  T4 represent two purely 
inhomogeneous commuting transformations. In (161, we have taken into account only 
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the transformation T4T3Tz, while TI has already been considered by using the gen- 
eralised Gauss-Hermitian beams with spherical wavefronts. 

5. Recurrence relations and start integrals for slab waveguides 

The mode overlap integrals are the matrix elements (cf (15)) 

+:,(x‘) exp[ikn,(x’- d)e]$,[x(x’)] - dx‘ (19) 

where 
a^’+Q*‘/n’) = n’ln’) Z+Zlm)= mlm) 
&’ ICY‘ )  = CY’ ICY’ )  $la) = (YILY). 

In coordinate space representation 

(x’ln‘) = I,!I,.(x’) = 

(x’lm)=pm(x‘)= 

(x’l y ’ )  = $,.(x’) = (?)‘I4 exp( - w ’ k x ’ ’ / 2 + ( 2 w ‘ k ) ’ ’ * y ’ x ’ -  yi2/2 - 1  y‘J2/2 

exp( -w’kx’2/  2 )  H,,( x‘( w’k)’’*) 

exp(-exp(-ix) - kxI2) H, ( x‘ ((kc;sx))”) 

t 20) 
2P 

+ g2,2  - /al2,2}. 

Calculating (n’l&’lm), (n’l&lm), (n’l&”lm) and (n’lZ+lm) yields the following recurrence 
relations 

A graphical representation is shown in figure 3 .  If three of the points (matrix 
elements) of such a graph are known, the fourth can easily be found, and only a 
restricted number of matrix elements must be known explicitly (for example T:, TY, 
T:, T: or T:, TA, T i ,  T i ) .  In the following, we calculate T:, T i ,  T:’ (terms with 8’ 
in the exponent will be neglected compared to e). Using (20), we obtain immediately 

= $$=,(x‘) exp[ikn,(x’- d)8]1(/,=o[x(x’)] dx’  
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( m . n ' - I  I ( m ,  n'-1 I ' (m ,n1 -11  

w'k exp( -ix) 
2[w'p + exp( -ix)] 

d 2 -  
w ' p  + exp( -ix) 

2(pw' cos X ) l I 2  ) ' I 2  exp( - 
w ' p  + exp( -ix) 

and 

i+b:.(x') exp[ ikn, (x ' -d)O] i+b , [x(x ' ) ]  - dx'  

1 ~ 1 2 + 1 ~ ' 1 2 )  exp( _ e x p ( - i ~ ) ( 2 k p  w ' p  + exp( COS -ix) x)"* ( w ' d  - inoO)g 
= T:exp( - 2 

(2w'k)''' 
w ' p  + exp( -ix) + ( d  exp( -ix) + ipno6) y'* 

2(w'p cos x p 2  + exp( -ix)cyy'* 
w ' p  + exp( -ix) 

+- 1 w ' p  -exp(-ix) y,.+2 +- 1 exp(-ix)[l - w ' p  exp(-ix)l 
2 w ' p  + exp( -ix) 2 w ' p  + exp( -ix) 

Figure 3. Graphical representation of the recurrence relations (21) .  

If we use (23) as a generating function for mode overlap integrals, then, according 
to (A2.3), we obtain 

T ;  = c( m ! n'!)"'2Hm,,,( C, t1, t2) (24) 
with 

( 2  k p  COS x )  I" 
( w ' d  +in,O) 

'1=-l+o'p exp(-ix) 
(2w ' k  ) ' I2  

1 + w ' p  exp( -ix) 
[ d - ipn,O exp( -ix)] 5 2  = 

C =  

exp(-ix)[ 1 - w ' p  exp( -ix)] ( w ' p  cos x)I'2 
-2 exp(-ix) - 

u'p + exp( -ix) w ' p  + exp( -ix) 

( w ' p  cos ,y)I'2 

w ' p  + exp( -ix) 
w ' p  - exp( -ix) 
w ' p  + exp( -ix) 

-2 exp(-ix) - 

and Hm,(C, t1, t2) is a two-dimensional Hermite polynomial (Erdelyi 1953). 
The general formula (24) is not very convenient due to the Hermite polynomials 

H,,,,,. The special mode overlap integrals between the Gaussian fundamental mode of 
the second (first) waveguide and modes of the first (second) waveguide, however, may 
be expressed in terms of the usual one-dimensional Hermite polynomials. 
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From (23), we obtain 

c_ exp(-ix)(2kp cos x ) " ~  
( y ' = O ( & ) =  ~ : e x p ( - l g / ~ / 2 )  exp (w'd - ino6)g 

w ' p  + exp( -ix) 

1 exp(-ix)[ 1 - w ' p  exp( -ix)] 
2 u'p + exp( -ix) 

+- 

or, with 

Comparing both expressions and using the generating function for Hermitian poly- 
nomials, we have 

TO, = T: 

Correspondingly 
- -  

(+'la = 0- m = 0) 

= exp(-/y 'J2/2) 1 ( n'!)-''2( y'*)"'T; 
n '  

Therefore 

where 

+ ipnoO Y'* 

[d  exp(-i,y)+ipno8]. exp( -2ix) - ur2p2  
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The quantities q( n’, m )  = I T i /  GI2 are relative intensities and can be measured (Golub 
1984).  We find the following relations between q(  1,  0), q ( 2 , O )  and the parameters 
d, 8, w, w ’  

exp( -ix) - w ’ p  

exp( -ix) + w ’ p  
q ( 1 , 0 ) = 2  

d exp( -ix) + i p n o B  ’ 
= 2w’k 

exp( -ix) + w ’ p  

exp(-ix) - w ’ p  
exp( -ix) + w ’ p  

1 /2  ) (12ii2-11-21C12). =( 1+w’2p2+26J ’p  COSX 

1 + w t 2 p 2 - 2 w i p  C O S X  

Moreover, the following sum rule can be formulated: 

c d n ’ ,  0) = c d o ,  m )  = 1 / 1  GI’ 
n ’  m 

1 1 + d 2 p 2 + 2 w ’ p  C O S X  I i 2  =- (  2 w ’ p  cos x ) 
w’k(  1 + w’k cos X)d’ - knodw’p2e sin x 

1 + w ’ ’ p 2 + 2 w ’ p  cos x 
which may be useful for analysing the experimental data. It should be noted that the 
asymptotic behaviour of the coupling coefficients for large mode numbers m, n’ >> 1 
can be investigated, too, and an analogue of the Franck-Condon principle may be 
formulated in this case. The procedure is quite similar to the one by Krivoshlykov 
and Sissakian (1979) .  

For the second coordinate (subscript 2 ) ,  we have, according to ( 1 3 ) ,  the same 
relations as before, only with e = 0 and d, = d,; + dxi. 

6. Coaxial parabolic-index circular waveguides with gap between them 

The modes of parabolic-index fibres with circular symmetry may conveniently be 
represented in a cylindrical coordinate system r, Q, z in terms of Gauss-Laguerre 
beams with plane wavefronts. During free space propagation, these modes transform 
into spherical Gauss-Laguerre beams near the front face of the second waveguide, 
which are described by a representation of generalised angular momentum states (see 
appendix 3) .  The coupling coefficients between these spherical Gauss-Laguerre beams 
and plane Gauss-Laguerre modes of the second waveguide give us the mode excitation 
coefficients. Unfortunately, the coupling coefficients between these Gauss-Laguerre 
beams can be expressed by known functions only in the case when the transverse offset 
and the tilt between the waveguides are absent. Therefore, we shall concentrate here 
on the problem of two coaxial circular parabolic-index waveguides with only a longi- 
tudinal gap between them and generalise the results obtained by Krivoshlykov and 
Sissakian (1979)  for the case of waveguides without gap. 
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The mode coupling coefficients between these waveguides are given by the mode 
overlap integral (u'l'ld), where (cf (A3.5)) 

x exp( -w 'kr2 /2) l~~~, - , , ) ,2 (  w'kr2) exp( -il'cp) (30) 

are the Gauss-Laguerre modes of waveguide 2 and 

(31) 

are the spherical Gauss-Laguerre modes at the front face of waveguide 2 irradiated 
by waveguide 1. The parameters p and x are connected with the gradient parameter 
w and the gap zo between the waveguides according to (A1.16) and (14). 

In order to calculate (v'lld) (all matrix elements with If 1' are vanishing), we may 
use the formula (Erdelyi 1954): 

lox exp(-x)x"l:( px)lG(qx)  dx  

and the following formula for Jacobi polynomials 

(32) 

(Erdelyi 1953) 

(33) 
p ? ~ ' ( x ) = (  n + P  ) ( y ) " $ - n , - - n - a ; p + 1 ; -  

x - 1  
Then it is easy to obtain the expression for the mode overlap integral in terms of 

Jacobi polynomials: 

(v ' l l d )  = (-I) ' (  - 1 ) [ L ' + " ' ) / 2  [ -exp( -ix)]" 
O J ' ~  + exp( -ix) 

( 1 '  - I ) / ?  

X 

2wlp cos x + d 2 p 2  + 1 

2wtp cos x - w'2p2 - 1 w ' p  + exp( -ix) 

2 w ) p  cos x + w t 2 p 2  + 1 (34) 

The overlap integral between the fundamental mode of the first waveguide (spherical 
Gaussian beam) and modes of the second waveguide has the simple form 

~ - ( ~ ( w ' p  cos,y)ll ')(w'p -exp(-iX) 
u'O100) = w ' p  + exp( -ix) w ' p  + exp( -ix) (35) 
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In the case of excitation of a waveguide by a Gaussian beam with plane wavefront 
(x = 0), or in the case of coupling between the waveguides without gap, the mode 
overlap integrals may be expressed in terms of Wigner’s D functions (Krivoshlykov 
and Sissakian 1979). The recurrence relations for mode overlap integrals are similar 
to those obtained by Krivoshlykov and Sissakian (1979) and follow immediately from 
the recurrence relation for Jacobi polynomials (Erdelyi 1953). 

7. Conclusions 

We have investigated in a scalar theory the mode excitation of parabolic-index optical 
waveguides by spherical Gauss-Hermite and Gauss-Laguerre beams. As an example, 
the mode coupling between two waveguides possessing an infinite parabolic-index 
profile, with identical on-axis values n( r = 0) = n’( r = 0) = no but different gradients 
w f w ’  has been investigated. The imperfections of the connector consisted in a 
transversal shift d (offset), a tilt of the waveguide axes through the angle f3 and an 
axial shift (gap) of the waveguides through the distance zo. The algebraic procedure 
borrowed from quantum theory proved to be very convenient in deriving the recurrence 
relations and sum rules, which allow an easy calculation of mode coupling coefficients 
between arbitrary incoming and outgoing Gauss-Hermite modes. The parabolic profile 
represents a good approximation to other realistic index distributions. The results of 
this work are applicable to a lot of important practical problems, for example to a 
problem of fibre excitation by astigmatic elliptical Gauss-Hermite beams. Some of 
these problems will be taken up in forthcoming publications. We also hope that we 
can attack the taper problem in a similar manner. 
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Appendix 1. Gaussian beams and coherent states 

We consider an elliptical Gaussian beam (Yariv 1975) 

where qj is the complex beam parameter with 
1 1 2i 

qj R, kwf’  
- 

(Al . l )  

(A1.2) 
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Here, R, is the radius of curvature in the xJz plane and wJ is the beam width (for 
4) in this plane. These two parameters are z dependent. 

(a )  We consider such a z value (beam waist), where R, =CO, i.e. qJ is imaginary. 
Such a Gaussian beam with plane wavefront can be represented (Krivoshlykov and 
Sissakian 1979, 1980) by usual coherent states lala,) = la) = l a ( w , ) ) ,  which were con- 
structed in quantum mechanics by Glauber (1963a, b)  as eigenfunctions of the boson 
annihilation operators 

a*J =(kwJ/2)”’(2J+;j?J) i 
(A1.3) 

that is, 

( i l l a l a 2 )  = a ,1a la2 ) ’  (A1.4) 

2J and $J = -(i/k)aJ are coordinate and  momentum operators (with k +  l / h ) ,  whose 
eigenvalues x, and p, characterise the beam centre position and the beam slope (Marcuse 
1972). w, is a positive parameter (cf (7), where we consider a circular-symmetric beam 
with w l  = w 2  = U ) .  The operators satisfy the following commutation relations: 

[a* ,  , a*;] = s,,i 

+u,a2(x1 9 x2) = +u, (x l )+u2(x2)  = ( X I X * l ~ * Q ’ )  

[a* , ,  4 1  = 0. 

In coordinate representation the coherent state (A1.4) has the form 

(A1.5) 

This is, indeed, a Gaussian beam with plane wavefront and width uJ (standard deviation; 
/$/’ considered), where 

U; = (al(A2J)21a) = 1/(2kwJ) = w;/4 (A1.6) 

with A;, = TJ -(2,). The complex eigenvalues aJ of the operator a*J (A1.3) are connected 
with the coordinates of the Gaussian beam centre in phase space by 

a, = (kw~/2)”*(x~+(i/w,)p,) .  (A1.7) 

The coherent states are not orthogonal 

( p  la) = exp( --$I a/’ - flpl’ + a p * )  
but form a complete (overcomplete) system of functions: 

(Al.8) 

(A1.9) 

Therefore, any field I f )  may be represented as a superposition of coherent states (AlS) ,  
i.e. as a superposition of inhomogeneous plane waves with Gaussian amplitude: 

( A l .  10) 

The value I(a1f)l’ represents that part of the energy of the field I f ) ,  which is transmitted 
by the given Gaussian beam la). 
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It is interesting to note that coherent states (A1.5) minimise the usual uncertainty 

((A2j)2)cx((A$j)2)cx = 1/4k2 ( A l . l l )  

and show maximal localisation in phase space. Therefore, one can regard Gaussian 
beams (A1.5) as wavepackets, which are most close to geometrical rays (Krivoshlykov 
and Sissakian 1979, 1980). The centre of the beam gives the geometrical ray position 
in phase space and its width U, gives the region of ray field localisation. 

(b) Now consider such a z value, where Rj is finite, i.e. qj complex, representing 
a Gaussian beam with a spherical wavefront. Such a ‘spherical Gaussian beam’ can 
be described (Krivoshlykov et a1 1983a) by generalised (or correlated) coherent states 
la1a2)= I@1a2) = le) = le(p,, x j ) ) ,  which were constructed in quantum mechanics 
(Dodonov et a1 1980) as eigenfunctions of a generalised annihilation operator 

relation 

that is 

(Al.12) 

(A1.13) 

[8,, s:1= SJ [ $ I ,  f f l = o *  
Note while (A1.3) was a special linear combination of the operators $J, fiJ, (A1.12) 
represents the most general linear combination satisfying the given commutation 
relations. 

In coordinate representation, the generalised coherent state (Al.13) has the form 

pala2b1 , x2) = 9a1(XI)!&*(x2) = ( X I X 2 I 3 )  

+ -  af e x p ( - ~ @ ~ )  --}. lejI2 
2 2 

(Al .  14) 

The complex parameter g j  of the generalised coherent state (A1.13) is given by the 
position xj and slope pj of the Gaussian beam centre, analogously to the case of the 
usual coherent states (A1.5): 

(Al.15) 

The parameters pj and xj of the generalised coherent states (A1.13) are connected 
with the beam width uj and the radius Rj (which may be positive or negative) of 
curvature of the Gaussian beam (A1.2) as follows: 

2 sgn RJuf 
(4u14+ R;/k2)’” 

sin xJ = - 2 u f l  ‘1 I 
” = (4u;+ R;/k2)‘12 (Al .  

(Al .  

qj is an arbitrary phase, which will be set equal to 0 in all our applications. 



3820 S G Krivoshlykov and E G Sauter 

Generalised coherent states (A1.13) also possess the properties (Al.8)-(A1.10). 
Therefore, an arbitrary field I f )  can be represented as a superposition of spherical 
Gaussian beams (A1.13). 

The uncertainty relation for generalised coherent states (A1.13) has the form 

(A1.17) 

(c) All relations for the usual coherent states /cr,crz) can be obtained from the 
corresponding ones for the generalised coherent states by specialising to the case x, = 0, 
pl = 0 (and p, = l / q ) .  Both sets of states are imitarily equivalent: 

(A1.18) 

with the unitary operator 

(A1.19) 
1 - w,pl cos x/ 1 - W,P/ cos x, 

+ a^; 

The canonical transformation between the operators Q and a /̂ is given by 

i / ( P / ,  x,) = U , a ^ / b / ) +  u/a^: (q)  (Al.20) 

where 

and 

/u /I2- /U/ l2= 1 .  

(A l .2  1 )  

(Al.22) 

We write this linear homogeneous canonical transformation also in the form 

(;:) + (8) = (; ;)( ;) = TI( $) (Al.23) 

Appendix 2. Gauss-Hermitian beams and Fock's representation of occupation 
numbers 

(a) The Gauss- Hermitian beams with plane wavefronts correspond to Fock's rep- 
resentation of occupation numbers and may be constructed as eigenfunctions of the 
number operator a ;̂iil: 

a^,'a^Jn) = nJn) n,=O,1,2 , . . .  (A2.1) 

where GI is given by (A1.3). They may also be constructed from the fundamental 
Gaussian beam 100) by 

(A2.2) 
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It is known (Glauber 1963a, b) that the coherent states (A1.4) are generating functions 
for Fock’s states (A2.1): 

(A2.3) 

Using (A1.5) in (A2.3), one can obtain an  explicit expression for the Gauss-Hermitian 
modes (A2.1) in coordinate representation: 

hI,n2(x, 9 x2) = +n,(xl)~n2(x2) = (XIX2lnln2) 

where H ,  is an  Hermite polynomial. 
The modes Inln2) form a complete and  orthonormal set of functions: 

(n,lnj)= 6, c In,n2)(n,n2l = f. 
n l n z  

(A2.4) 

(A2.5) 

Therefore, an  arbitrary field I f )  may be represented as a superposition of Gauss- 
Hermitian beams with plane wavefronts: 

If)= c In,n2)(n,n, l f ) .  (A2.6) 

(b) We obtain the generalised Fock’s representation of occupation numbers as 
eigenstates of the generalised number operator 2;g1 (Krivoshlykov and Sissakian 1986): 

a:a/Iy2) = Ll,ln,n,) o,, 02=0,1,2, .  . . (A2.7) 

where 2, is given by (A1.12). The equations (A2.2), (A2.3), (A2.5) and (A2.6) still 
hold, if we replace n,, i&, a, by the generalised (underlined) quantities. Therefore, we 
can obtain an  expression for the generalised states (A2.7) using the generalised coherent 
states (A1.14) as generating functions for (A2.7) according to (A2.3): 

n1n2 

$n,n:(X1 I x2) = $n,(xl)$n2(x2) = ( X I X 2 l ~ )  

(A2.8) 

It is easy to verify (Krivoshlykov and Sissakian 1986) that all ‘spherical Gauss-  
Hermitian modes’ (A2.8) have the same radius R, of wavefront curvature, which 
coincides with the radius of curvature of an  axial Gaussian beam 100) (cf (A1.16)), 
and that the mode width.c+ increases with mode number -”/ according to the formula 

(A2.9) c+/(rJ/) = c+,(0)(2Ll/ + 1)’I2. 

Appendix 3. Gauss-Laguerre beams and representation of generalised angular 
momentum states 

The representation of generalised angular momentum states Id), which generalises the 
angular momentum representation I of) in quantum mechanics, has been introduced 
by Krivoshlykov and Sissakian (1986), where it was shown that this representation 
may be used for the description of Gauss-Laguerre beams with axial symmetry and  
spherical wavefronts. 
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The beams with circular symmetry may conveniently be described in a cylindrical 
coordinate system r, (o, z, where r exp i(o = x,  + ix,. Then the ‘spherical Gauss- Laguerre 
modes’ I$) may be constructed as the simultaneous eigenstates of the generalised 
operators of occupation number 

i 0 - a * + *  - - I  a1 + a2 * + *  a 2  

and of angular momentum projection 

where the operators Gj are given by the expression (A1.12) under the conditions 
pI = p2 = p and x1 = x2 = x, which correspond to circular beam symmetry. Thus, we 
have 

i o l v l )  = 4Ur) Lid)= ( l / k ) l d )  (A3.1) 

where U = ml + m, is a non-negative integer, 1 is an integer, too, which can assume 
only the values I =  *U, * ( u - 2 ) ,  +(v-4),  . . . , *1 or 0;  - v s  I s  U ( U  and I have equal 
parities). 

Expressions for spherical modes id) in cylindrical coordinates r, (o may be obtained 
using a procedure similar to that used by Malkin and Manko (1979). 

Thus, the generalised coherent states 1/31/32), which are normalised eigenfunctions 
of the annihilation operators 

- 

(A3.2) 

should be used as the generating functions for spherical modes Id). The expression 
for the generalised coherent states I&&) may be obtained from (A1.14), if we put 
g ,  = ( p ,  + P 2 ) / f i  and g ,  = ( P I  --P2)/ifi. This expression in cylindrical coordinates 
has the form 

- 

x exp [ exp(-ix) [ -- 2; r2+ (k  - ;sx)‘” 

x r ( p l  exp(-i(o)+p2 exp(i(o~]}. 

Then, using (A3.3) as generating function, according to the formula 

(A3.3) 

we obtain the expression for spherical Gauss-Laguerre modes Id) in cylindrical 
coordinates 
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where L",x) is the Laguerre polynomial. For beams with plane wavefront (x =O), 
the spherical modes Id) transform to usual Gauss-Laguerre modes Id) (see, for 
example, Snyder and Love 1983). 

The spherical Gauss-Laguerre modes Id) as well as the usual modes Id) form a 
complete and orthogonal set of functions 

(A3.6) 

Therefore, an arbitrary field I f )  may be represented as a superposition of Gauss- 
Laguerre beams with spherical wavefronts 

(A3.7) 
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